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CHAPTER XVIII
MISCELLANEOUS FUNCTIONS

18.1. Mittag-Leffler’s function £ a(z) and related functions
The function
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was introduced by Mittag-Leffler (1903 1904, 1905) and was investigated

several authare a arha 1o mnnf Wiman (1 Mt:\ pn]]nrt‘ {1MQ\
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Humbert (1953). In this chapter £ will always stand for the functlon (1)
which must not be confused with the physicists’ notation for the incom-
plete gamma function mentioned in sec. 9,2,

E (z), for a > 0, furnishes important examples of entire functions of
any given finite order in a certain sense each F (z) is the simplest
entire function of its order (Phragmén 1904). Mlttag-Leffler s function

also furnishes examples and counter-examples for the growth and other

properties of entire functions of finite order, and has other applications
(Buhl 1925).
We have

(2) E (2)=¢F Ez(zz)=coshz, E%(z%)=2ﬂ'%e_‘Erfc(-z%)

and E_(z") for positive integer n is a generalized hyperbolic function (see

also sec. 18.2).
Many of the most important properties of E (z) follow from Mittag-
Leffler’s integral representation

a
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3) E (z2)=—ro —_—dt
= 2w Jg

where the path of integration C is a loop which starts and ends at -,
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18.1 MISCELLANEOUS FUNCTIONS 207

and encircles the circular disc |¢] < |z|'/®in the positive sense:—n<argt
< mon C. To prove (3), expand the integrand in powers of z, integrate
term-by-term, and use Hankel’s integral 1.6(2) for the reciprocal of the
gamma function.

The integrand in (3) has a branch-point at £ = 0. The complex ¢-plane
is cut along the negative real axis, and in the cut plane the integrand is
single-valued: the principal branch of ¢t*is taken in the cut plane. The
integrand has poles at the points,

(4) ¢ ___zl/a.ez‘rrin/a.

- m mteger

but only those of the poles lie in the cut plane for which
(5) —an<argz+2mm<an

Thus, the number of the poles inside C is either [a] or[a + 1], according
to the value of arg z.

Feller conjectured and Pollard (1948) proved that E (-x) is completely
monotonic forx >0 if0 < a<l, i.e., that

d"E (-
ELD x>0, 0<a<l
dx" =

(6) (=1)"
The proof is based on (3).

To investigate the asymptotic behavior of E_(z) as z » w, first assume
that z » « along a ray which is outside the sector |arg z| < an/2 (there
are such rays if 0 < a < 2). If there are any poles ¢ _ satisfying (5), they
will lie in the half-plane Re ¢ < 0. Deform C to consist of two rays in
the half-plane Re ¢ <0 so that the poles, if any, lie to the left of C, also
set

t

-‘ -
a N L ne e N
$a_ == 2 Paid B - » »N
t"=-z =1 2 \ Z/ z

in (3) and note that (1 — t*z~")"" is bounded uniformly in |z| and ¢ if
arg z is constant and ¢ is on C. Using again 1.6(2), the result is

N—1 -n

) E(z)== Y ———— +0(z|™)
@ n‘;' 'l -an)

z+0, |arg(=2z)]<(1-)a)m
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The O-term is uniform in arg z if
larg(=2z)| < (1= Voa—€)nm, e>0

The result is vacuous when a > 2.
Next assume that z » = along a ray, and |arg z| < an/2. Then there
is at least one ¢ _ satisfying

(8) -Yian<argz+ 2nrm < %an,

and there may be several (if a > 2): these poles lie in the half-plane
Re ¢ > 0. C can now be deformed as before except that in the course of
the deformation of C the poles satisfying (8) are crossed and contribute
residues. The result then is

N=1 -
1 t "
R et l— -N
O E=) a %e nz.__,' F(l-an)‘%O(l‘zl )

Z > oo, lal‘ngS%aﬂ

where ¢ _ is given by (4) and summation is over all those integers m which
satisfy (8). In particular, if 0 < a < 2, m = Ois the only integer satisfying
(8), and

1
(10) E (2)=— exp z'*+ 0(z|™") 0<a<?2, |argz|<Y%am, 2z
a .

From (7), (9), (10), and the definition of the order of an entire func-
tion (see, for instance, Copson 1935, sec. 7.4) we infer that Ea(z) is an
entire function of order 1/a for a > 0. The asymptotic expansions (7),
(9) were generalized to complex values of a by Wiman (1905).

The zZeros of Ea(z\ were |n\rncf‘gnfﬁtl ‘\u Wiman (10(\ ) F‘nr a>2

SIS .

Wiman proved that E (z) has an infinity of zeros on the negative real
axis, and it has no other zeros. If n (r) is the number of zeros of E (z)
in |z| < r, Wiman proved

(e el

TR R Y o N\
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where [x] is the greatest integer < x. For 0 < a < 2 the distribution of

mvarnce 1a antiraly diffarant Fvoluding the cage o = 1 (wl\ﬁn fl’\PI'F are no
BVA IO AO Ullbuvl] ul&l\dl\dllb mv‘uuulb PAAW wERAAIW W Y aaS as

zeros), Wiman shows that asymptotically the zeros lie on the curve

l\

w
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(12) Re z'2+ log|z| + log|T'(~a)] =



18.1 MISCELLANEOQUS FUNCTIONS 209

and also that
(13) [#"'r2 = Yal-1<n(F) <77 r'*=Y%al+ 1 0<a<2 a#l

Moreover, for 1 < a < 2, there is an odd number of negative zeros. Wiman
investigated the zeros of £ (z) also for complex values of a.
The functional relations

(14) :'2' E (2™ ™) amE__(z")
=0

(15) (—d-> E _")=E_ %)
dz

n=1
d [ z-k-/n
g e § o2 a/n
1o <42> Fan@™) ,.Z. TRy STV

where m and n - 1 are positive integers, are immediate consequences of

(1), From (16)

d 2 z km
2 1/n -2
T E ( )] € {1 107\
az k=1 L \1L—-#K/n)
amd camae ok cmntian APl L a0 1/1)
a0a upom integation O1 wnisS Dy means o1 J,1\1)
y (1 =k/n, z)
(17) E'/( l/’l)_e [1 5‘ —:-T__——- n=2,3,..
o, TA-&/m)
t\n expuclt expresswn IOI‘ LS IOllOWS II'OIT‘ \14) ana \1 The l'.hll'd

)
equation (2) follows from (17) for n = 2 by means of 9.9(1), (2).
The integral

1

(18) J, e 'E (:%z)de= - _

-2

was evaluated by Mittag-Leffler who showed that the region of conver-
gence of (18) containsthe unit circle and is bounded by the line Rez 1e_1.
The Laplace transform of E (39} may be obtained from (18), and was

used by Humbert (1953) to obtain a number of functional relatlons sat-
isfied by Ea(z).
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integer. The region of convergence of (26) is the same as that of (18).
The Laplace transform of tA~' E o(t%) may be evaluated by means of (26)
and was used by Agarwal (1953) and by Humbert and Agarwal (1953) to
obtain further properties of £ |

A function of two variables resembhng E,, gwas briefly discussed by
Humbert and Delerue (1953).

The functions £ jand £, ; increase indefinitely as z » « in a certain
sector of angle afr, and approachzero as z » = outside of this sector.
Entire functions which increase indefinitely in a single direction, and
approach zero inall other directions, are also known. Two such functions
are

00
Zk

, T+ & (log k)™

(] z k
S E— 0
z [Iog(k+1/a) <a<l

Theyhave been discussed, respectively, by Malmquist (1905) and Lindelsf
)

0<ax<l

Barnes (1906) has investigated the asymptotic behavior of £ (z), and
also that of several similar functions, in particular of the functions
o0
« 2k = z°T( + ak)
2‘ ’ Z ’
L, (k+ OPT(+ ak) “ k!

« zXTQ+ ak)
o T(l+a+ak)’

A function intimately connected with £, ; is the entire function
% k
z
)z Y — a, B>0
o kD (ak + B)

which was used by Wright (1934) in the asymptotic theory of partitions.

The connection with Ea 3 is given by

(27) ¢(q B

had -1
{28) Jr € ¢( “r v ) at=s E
o
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& (z) can be represented by the integral (Wright 1933)

(0 +)
(29) ¢(a, B; Z)*-é——,/ u-’aexp(u+zu-°’)du a>0
miJ_

To prove (29), expand the integrand in powers of z and use 1,6(2). The
asymptotic behavior of ¢ as z » « was also investigated by Wright (1934 a,
1940). The relations

(30) azpla, a+ B;z)=¢dla, B-1;2)+(1 - B) ¢(a,B; z)

deé(a, B; 2)

(31) -

= ¢(a, a+ fB; z)

d¢(a, a+ B; z)
dz

(32) az = ¢la, B-1;2)+ (1- B)pla B; 2)

follow from (27). Since

2
33) J,(z)= (2z)" ¢ <1. v+ 1;-%-),

Wright’s function may be regarded as a kind of generalized Bessel func-
tion. (30) is a generalization of the recwrrence relation of Bessel func-
tions, and (31), (32) are generalizations of the differentiation formulas.

Some of the properties which ¢ shares with Bessel functions were enu-

merated by Wright. A generalmed Hankel transformation with the kernel

(35" (xy)“qb(a,/s Rt

was discussed by Agarwal (19.50 51, 1953a)
18.2. Trigaﬁﬁmet:i* nd hyperbolic functions of order n

The n functions

1 (1-i)n .
(2) & (=, n)——_— E_w exp(o® x) i=1,2 ..,n

n =m=1
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are sometimes called hyperbolic functions of order n. They reduce to
hyperbolic functions when n = 2,

(B) h,(x,1)=¢* &, (x,2)=coshzx, h,(x, 2) = sinh x

In general, n will be a fixed positive integer and will, as a rule, not be
indicated. It will also be convenient to extend the definition (2) to all
(positive, zero, or negative) integers i which is tantamount to setting

(4’) h i+n (x, n)= h l(x’ n) i integer

This will often simplify the writing of formulas.
Since " = 1, all &, satisfy the differential equation

dy

5) ~———=—y =0

5) dx™ y

and since

6 3 o™=0 for integers r not divisible by n
n=1

=n for integers r divisible by n,

the & . also satisfy the initial conditions

d-i-'h. 0 lf l;é;
(7) —;;T_-'—-(O)=8ij= L oie;

i’j=1’29""n

Thus, b , «.. , h_form a linearly independent set of solutions of (5), and
their Wronskian is equal to unity.
The power series expansion

o0 xnr+i~! .
8) h.(x, n)= \ . i=1,2 ..,n
Ax, n)= -
¢ Lo (nr+i-1)!
r=

is obtained by expanding the exponential functions in (2) and using (6);

1 aegantation
-

tha inteoral ranr
s Waial it Sodulalivn

n—i_xt
] t" e

A

dt i==1,...,n

(9) hlx,n)=

2mi t"-1

5 K\
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where C is a simple closed curve encircling the unit circle once in the
positive sense, is proved by the remark that the evaluation of the integral
as a sum of residues leads to (2); and the relation

(10) exp(w™ x) = i ltThe h,(x, ﬁ) m integer
=1

lfollows from (8).

Some of the basic formulas for hyperbolic functions of order n are

(11) b (0" x) =0 """ b (x)

(12)—-—(1-*-@ hi- ;&)

13) he+y)= 2 b @k, 6)

(14) 1 2 n
" ! n=t n n .
......... . =0 (2 o "™hk)=1
hz h3 hl

(15) [ e h (0) db == Res>1, i=12 .,n
S

Here i, j, m are any integers [except in (15) where i is restricted]. (11)
and (12) follow from (2), (13) follows from (5) since hi(x + a) is that
solution of the differential equation (5) whose j-th derivative is 4,_ .(a)

when x = 0, (14) is the Wronskian of 4, , ...,k which is a circulant (see
Aitken 1020, gec. l':1\ and can be evaluated nYn]ll"lflV and (1 ';\ is the

Laplace transform of 4 (t) and follows likewise from (2) or (8).

For these and other formulas see Poli (1940, 1949a, the latter with a
detailed bibliography), Oniga (1948), Bruwier (1949, 1949a), and Silver-
man (1953). Poli (1949a) indicates some relations which hold when n is
a composite number, gives expansions in terms of the &, o and some
appllcatlons Bruwier (1949b) considers 1 @, @2 e, " ""as the units
of a linear algebra, the multiplication table being specifled by

) . s
ol wl=0t"’
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(hypercomplex numbers). ¢“* is a hypercomplex number, and (10) shows
that the & are the components of ¢“*. This fact is used by Bruwier to
prove the properties of the 4 (x). Matrices whose elements in the i-th
row and j-th column are a; h (x, n)/a ., where i, j =1, 2, ..., n and
@, < 5 @ is a given set’ of constants, were conSIdered by Lehrer
(1954).

From (8) and 18.1(19),

(16) h(x)=x*""E_.G") i=12 ..,n
and in particular
(17) A, (x) = E (™)

giving the connection with Mittag-I.effler’s function.
The n functions

hing (- l)rxrr+i-l

18) k (x, n) = B ——— =1, 2, ...,
(18) ‘(x ") ,ZO (nr+i-1)! ' "

are sometimes called trigonometric functions of order n;they are solutions
of the differential equation

n

1 if i=j i,!‘=1,2,¢oo,n
Here again we extend the definition to all integers i by setting
(21) &, (x, n) ==k (x, n).

These functions have been investigated by the above-mentioned authors
and also by Mikusinski (1948). With

(22) A =exp G—i‘)



216 SPECIAL FUNCTIONS 18.2
so that A is an n-th root of — 1, we have

(23) k()= A" R (Ax, n)

and the properties of the k ; follow easily from those of the & .. The prin-
cipal formulas are

(24) £ (Ax)=2'"" A (x)
(25) ki(co"x)= AL ki(x)

dlk .
(26) —-——'(—xl =k._.(x)

dx’ i)

(27) k (x)=... E A(l i)(2m +1) XP(AZ..*' )

n =m=1

(28) exp(A™*'x)= 3 pliNmtn, (x)

t=1

1 t" t _ xt
(29) k (x)= [ F T,
t 2mi Jc t"+1

(30) k£, (x+y)= 3 k &k @)
ji=tv /

B1) [ ( S Attty N=1

=1 i=1

s n=t

(32) [ etk (e)de =
J° s"+1

(33) h(x, n)+k(x, n)= 2k (2, 2n)
h(x, n) -k (x, n)= 2hn+i(x, 2n)

It can be seen from (27) that & ‘(x n) is not a periodic function except
for n = 1, 2. The zeros of & (x)haVebeen investigated by Poli (1949 a) .
for n = 3 and by Mlkusmskl (1948) for any n > 1. Mikusinski’s investi-
gations are based on the system of linear differential equations satisfied
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bv L {»v L () and laad to the nllom'nn ocanclnaiane E C}\ 'L ‘(»v ’n\

J vy \~/, see 9 b Vv GG aTAu U the tol v A conciusions.

has an infinity of simple positive zeros: the zeros of k (x, n) an k}l(x,n),
i £ j (mod n) interlace. The least positive zero of k| (x, n) is between

G+n-=-1)! 4 2@ +n=1)!
G-11 an G-1)!

The large positive zeros of k (x, n) are approximately equally spaced,
the distance between two consecutive zeros of k (x, n) approaches
m csc(n/n).

Quotients like & (x, n)/k (x, n) may be regarded as generalizations
of tan x and ctn x: for these generalizations see Oniga (1948), Poli
(1949).

An entirely different generalization of trigonometric functions was
given by Grammel (1948, 1948a, 1950).

18.3. The function v(x) and related functions

The functions to be considered in this section are

) o xtdt . o) x%ttde
ey Vx:[ C+1) v a / Ma+t+1)

( ) /” xR de
@ v&=P=)  FELDTEsD

' ate B e
He By “)=,[ T(B+ D (a+t+1)

The first of these functions was encountered by Volterra in his theory of
convolution-logarithms (Volterra 1916, Chapter VI, Volterra and Peres
1924, Chapter X): Volterra denoted v(y - x) by A(x, y), and v(y - %, a)
by Alx, y; a) or )\(x, y|a). These functions also occur in connection with
operational calculus, appear inan inversion formula of the Laplace trans-
formation, and are of interest in connection with certain integral equa-
tions. It may be noted that (2) is the definition of y adopted in recent
papers; some of the older papers write u for a function which differs from

(2) by a factor "' (8 + 1).
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Between the four functions defined by (1), (2) we have the following
relations

3) vx)=v(x, 0)= pu(x, 0)= ulx, 0, 0)
v(x’ a) = P'(x’ 0, a), F-(x, B)= #(x, B, 0)= xy(x, g-1,-1)
xv(x, a=1)-aviz, a)= pulx, 1, a)

All integrals in (1), (2) converge if x # 0, a is arbitrary, and Re 8>-1.
All four functions are analytic functions of x with branch-points at x = 0
and e, and no other singularity; v(x, a) and pu(x, B, a) are entire functions
of a. The definition of u can be extended tothe entire S-plane by repeated
integrations by parts. From (2) it follows that

o0 xa.+t tﬁ'“
(4-) F-(x’ B, a)‘[ F(q+t+1) d F(B+2)

1 oo at+t
o B! j—- A ]dt
re+2) J, de | T'(a+e+1)

I /m/u "
"T(R+m+1) ./o I_F(a+t+1)_l

and the last expression may be regarded as the definition of u(x, 8, a)
for Re B8 > =m — 1. The so extended functions pu(x, B, a) and u(x, B)

= pulx, B, 0) are entire functions of 8, and they are analytic functions

of x, and y(x, B, a) is also an entire function of a.

s 1
From (4) it follows that

o T
da""" l_F(a+ 1)_|

and since x%T(a + 1) is an entire function of a, we have by Taylor’s

expansion

m=1,2,...

5) plx, -m, a)=(-1)""

att S ()"
x t
(6) ™/ 5 1\ = y #(x’ -n- 1 a) ?
L\a+1+ 1) n=0 m !
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In order to investigate the behavior of u(x, 8, a) as x » 0, we rewrite
the second formula (2) as

mn{ l..o_\i'“a./'“ / 1\ tﬂdt

177\ o . R PR
() L \P+ p.\&, Py @)= x cxp\ /
Jo x Cla+t+1)

From (6) we have

1 o0 (=2)"
(8) Fm- nzo M(l, -n - 1’ a) 1

and it is known from Watson’s lemma (Copson 1935, sec. 9,52) that
substitution of (8) in (7) and integration term-by-term will give the
asymptotic expansion of the integral in descending powers of log(1/x).
Thus,

-l N=1 ~-1)" 1
O we B @) -n (ogl) [ Z (-1) (;8+ ),
1
Xp,(l -n-1 a) (08 ) +0<1°8 >]
1
Reg>-1, =x-0, arg(log——)
x

The asymptotic expansions of the other three functions in descending
nowera of laz (1 /%) follow I-.v {Q\ The first terms of the aevmntnhc ex-

PUWELIS Ui wUg 4/~ AUy =L el oL A2e =7 sOLL

pansions of v(x) and of v(x, a) were obtained by Volterra.
The behavior of v(x) as Re x » o can be seen from Ramanujan’s

integral (Hardy 1940, p. 196)

: 00 -xtd
10) v(x):e‘—/ A Rex >0
A tln? + (log t)°]

R

<mw

A thorough investigation of the asymptotic behavior of v(x) was under-
taken by Ford (1936). Briefly, Ford’s method is as follows. Let us ‘inte-

grate

H( 1 v ottty
% w) = [sin(ﬂw)]z‘/o. Fa+t+1)
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around arectangle in the w-plane whose corners are =N -Y%-ic, k+%-ic,
k +%+ ic, =N = Y% + ic where k and N are integers,k + N >0, and c is
a positive number. H (x, w) is a meromorphic function, and its poles
-inside the rectangle are at w = n, n = ~N, =N + 1, ... , k=1, k. The
residue of H at w = n is 7”2 x**"/T'(a + n + 1), If ¢ > w, the integrals
along the horizontal lines of the rectangle vanish so that
k

k+%+i el s .
1 /' too o r N=%+ioo o o 2 yatn
: ./ Hdw - — Hdw=Y ———
2mi k+%=ioo 2mi = N-Y~= {00 n=_Nr(a+n+1)

1 )
H(x,w)=H, + H,= =T — Q /
o

It can then be shown that

LY L S N (SR
27i R ! w—eri o I'(a+t+1) \ s w

+4- ioo +%ioo

k+)
- % xa.+tdt
=7 ———
o IFla+t+1)
1 k+%+ ioco
— H,dw-+0 as k -+ oo,
2nwi R+Y=
Y%= 100

and hence, making k + o,

0

catn =N=}+ioo
viz, a)- —_— =Y Hdw
nty Tla+n+1) .

= O (|x]* %) |%| - o0
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Combining this result with 18.1(21), (22),

v(x, a)=e*+ O(|x]*¥) x> o0y |argx| < Yim
= 0(|x|*7") x>0, Wm<largx|<w
for any integer N.

For u(x, B, a) a somewhat less complete result can similarly be
derived. Because of the branch-point of

H( ) 1 /' x* B
% P “linmw)l? J, Tla+e+1)

at w = 0, one is forced to take N = — 1 and obtains, as above,

by xatn nﬂ %t ico
» B, @) - —e = = i D H(x, w, B)d
ke, B, a) nZ, MNa+n+1) 21”‘/%‘-,:” , w0, ) dw

Further progress then would seem to depend on the asymptotic expansion
of the entire function

. -]
x"nh

=y T@a+n+1)

The following recwrence formula, differentiation formulas, series,
and integral are easy consequences of (1) and (2).

(11) I"(x’ B+1, a)=x#(x’ B, a- 1)- al"(x’ B, a)

(12) d v(x)= viz, =n), i—r—(i’—‘-ll= v(x, a~n)
dx" ] dx"
" d" , B,
(13) __#_(’flfl= ulx, B, =n), #(an a) -z, B, a-n)
dx™ dx
(14) 3 u” plx, n)=e™* vize®), 3 u"p(x,n,a)=e " yixe " a)
n=20 n=20

u pulx, B +n, a)=e " y(xe? B, a)

i (B+1)

n!
n=
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s vt s+ =u o ., TOMHrE@B-y+1) | .
e “u’ ulxe - B, a)du = wx, 8-y, a)

0 r@e+1)
ReB8>-1, Rey>0

(15) J

For numerous other formulas regarding these functions see in particular
Barrucand (1951), Colombo (1950, 1953), Humbert and Poli (1944).

The occurrence of the functions v and g in operational calculus is
due on the one hand to the formulas

o0 e':t 00 e-st
(16) ———, P IR N ——— dt=e%* y(e ™ a)
o F(t+1) o F(a+t+l)

w tBeTst
(17)f e de= e, ) Re B> -1
]
Y- e st . -
fo Tarrp= rehRad Re f>-1

which are equivalent to (1), (2) and show that the functions v, p are
Laplace transforms of simple functions; and on the other hand to the
formulas

(18) fo“e"‘v(z) dt = (s log s)™" Res>1
J;”e'“v(t, a)dt=s"%"" (logs)™' Rea>-1, Res > 1
(19) f:e-“#(t, B)dt=s"" (logs) ™" Res>1
_]:oe-“y(t, B, a)dt=s"%"" (log s) A" Rea>~1, Res>1

which may be established by means of (1), (2), (4) and show that v and
u have very simple Laplace transforms. For derivations of many properties
of the functions v and p by means of operational calculus, and for the
application of these functions in operational calculus, see Barrucand

and Colombo (1950), Colombo (1943, 1943 a, 1948), Humbert (1944, 1950),
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Humbert and Poli (1944), Parodi (1945, 1947, 1948), and Foli (1946).
Moreover, one of the numerous inversion formulas for the IL.aplace
transformation

(20) f(s)= f:e"‘F(t)dt,
viz. the formula (Paley and Wiener 1934, p. 39, Doetsch 1937)

1
2w

(21) F(t)=)}im / f(s)Ylvist, =%+ Ai)-v(st; =Ya=Ai))ds
00 o

involves v(x, a).
The integral formulas

0o 2
y
[}

Rea>-1, Rey>0
00 2 4
(23) f % exp (—-;—;) p(x, B, a)dx = 28%2 712 432 (4 B, Yoa—%)
0

Rea>-2, Rey>0
7 2\ / N\

b x x
(24) exp(——R——-)Dv( S % )y(x, B, a) dx
Jo \ %Y/ N\ 7Y /
Y Y N VR V2 S V R
=20 gty uly, B, 2a - 7v)

Rea>-1, Rey>0

may be established by substituting (4) in the integrands: in the last
case, (24), use 8.3(20). These formulas show, in particular, that the
functions v, y satisfy the following integral equations

1517 aec 1011 inwe

[ -]

(25) Lig™h y-%jr exp /— f—z-\ vix)dx =v(y)
AN

o0 / »y!z \ -
Yor % 7"‘/‘ exp -‘—;—-)#(x. B)dx = 28 uly, B)
- ° ~ y A
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.00 2
(26) Yn~'2 y-slz/ x exp (—-f—) viz, -1)dx = v(y, -1)
0 Yy
o0 xz
~? y-37 x exp ""4—;'— I"(x’ B, -1)dx = 2'3#(7’ B, - 1)
0

® x? x
(27) 27#v=! g% 4K v-%/ exp (— —-—> D_ <—-—— v(z, a) dx
o 8}' =3 2% y%

= vy, a) Rea>-1
00 2 X
2-54:;-1 ”-% y-%v‘% exp .__x._ D_ (~—0— #(x, /3, a) dx
, 8}' a 2%},%
==2,6#(),’ B, a) Rea>-1

In the case of the integral equation with the nucleus

1
x ————
on% K ¥ % exp

it is known (Stankovi¢ 1953) that (25) gives all characteristic functions
which, in a certain sense, are of regular growth; a similar statementis
likely to be true in the case of (26) and (27). For other integral equations
whose solutions involve the functions v and pu see Colombo (1943 a, 1952)

and Parodi (1948).
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